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In  a crystal without symmetry elements and containing a sufficiently large number of atoms the 
probability of the hkl reflexion having an intensity between I and I+dI  is P(I)dI, where 
P(I) = Z -1 exp ( - I/Z}, and Z is the sum of the squares of the scattering factors of the atoms. In  a 
centrosymmetric crystal the probability of the structure amplitude of the hid reflexion lying between 
2' and 2' + dE is P(F)  dF, where P(F)= (27rZ)-~ exp (-2~/2Z},  a result noticed empirically. In a 
centred crystal (It-1)//c of the reflexions are zero, and the remaining 1//c of them are distributed 
like those of an uncentred crystal with parameter/cZ, where ]c is 4 for face-centring and 2 for end- 
or body-centring. Other symmetry elements do not produce important effects on the general re- 
flexions, but may  make a zone or line of intensities behave as if centred or centrosymmetric. The 
mean value of I is Z, a fact that  can be used to put relative intensities on an absolute basis. The 
mean values of I F [ or 12 can also be used, but the mean" value of I is the only one independent 
of the symmetry. The difference between the ratios of (I F I)~ to ( I )  for centrosymmetric and non- 
centros~mnetric crystals may  serve for the purely X-ray determination of a centre of symmetry.  

f 

Some years  ago the writer suggested a method for the 
determinat ion of absolute from relative intensities 
(Wilson, 1942), and as a na tura l  extension endeavoured 
to determine the probabil i ty distribution function for 
X - r a y  intensities. When a paper  on this subject was in 
an advanced stage, Hughes (1949) showed tha t  a similar 
process* was of use in connexion with the Harker-  
Kasper  inequalities, and observed tha t ,  empirically, the 
values of the s tructure ampli tude (for centrosymmetric  
crystals containing only a toms of similar scattering 
powers) have an approximate ly  normal  distribution 
about  zero. The present paper  contains a theoretical 
justification of Hughes 's  observation, and some dis- 
cussion .of the distribution functions for crystals with 
other symmet ry  elements. I t  was originally planned to 
include a comparison of observed and theoretical dis- 
t r ibut ions,  but  this is now omit ted in view of Hughes 's  
work. 

1. I n t r o d u c t i o n  

In  simple crystals containing only a few atoms per unit  
cell all the positions of the atoms are p re t ty  well fixed by 
considerations s u c h  as charge, packing, and .va l ency  
angles. I n  more complex crystals the positions of the 
atoms, al though ul t imately  depending on the same 
factors, are in a sense random, and some conclusions 
about  the intensities of X- ray  reflexions can be esta- 
blished on statistical grounds. The s t ructure  ampli tude 
of the hkl reflexion from a crystal  containing N atoms 
per unit  cell is given by  

N 
F =  Zf~exp{2~i(hu~+kv~+lw~)}, (1) 

i=1 

* Harker (1948) also has discussed a process of obtaining 
absolute from relative intensities. The earliest suggestion, 
based on a somewhat different principle and rather difficult to 
put into practice, appears to be that of Hettich (1935) (Hughes, 
private communication). 

where f~ is the scattering factor and us, v~, w~ are the  
fractional co-ordinates of the j t h  atom. This m a y  be 
represented graphically on a vector diagram as the  
resul tant  o f ' N  displacements of amounts  f~ a t  angles 
35 =_ 2rr(hu~ + kv~ + lwj) to the x axis. The problem is to 
find the probabili ty,  P(x, y)dxdy, t ha t  the  resul tant  
s t ructure ampli tude F has components between x and 
x+dx, y and y+dy, or al ternat ively the probabili ty,  
P(I) dI, t ha t  the intensity,  I--  FF*, lies between I and 
I +dI. This problem is clearly very  similar to t ha t  of the 
probabil i ty of Brownian motion producing a given dis- 
placement in a given t ime (Einstein, 1905), and analogy 
suggests t ha t  

P(x,y)dxdy=(~Z)-lexp(-(x2+y~)/Z}dxdy,  (2) 
N 

where E = ~ f~. (3) 
i=1 

Since I = x2+ y2, the probabil i ty t ha t  I will lie between 
I and I + dI is the same as the probabil i ty t ha t  (x, y) 
will lie in an annulus between radii ~/I and ~/I + d(~/I), 
so t ha t  P(I)dI=2~r.P(x, y).~/I.d(~/I) 

= E -1 exp { -  I/E} dI. (4) 

These expressions are, in fact,  correct for crystals with- 
out symmet ry  elements. They m a y  be verified in 
various ways, such as by  considering the effect on F of 
introducing an ( N +  1)th a tom into the cell, bu t  the 
most  sat isfactory approach is probably via the so-called 
central limit theorem, part icular ly when the symmet ry  
elements are to be taken  into account. 

The central limit theorem (Cram@r, 1937, pp. 56-60) 
states tha t  the sum of a sufficiently large number  N of 
random variables ~ with mean values x~ and mean- 
square deviations a~ is normally distr ibuted about  

N 
X = E xj, (5) 

i=1 
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with mean-square deviat ion 
N 

A~= Z a~, (6) 
1=1 

whatever  the distr ibution functions of the individual 
random variables. In  the present problem the real and 
imaginary par ts  of the contr ibution of each set of equi- 
valent  a toms may  be regarded as random variables; the 
relations between the atoms of the set make it impossible 
to regard the contributions of each a tom as random. 
The distr ibution functions for a crystal  without  sym- 
me t ry  elements will now be considered in some detail, 
and then the effect of certain elements will be considered 
briefly. 

2. D i s t r i b u t i o n  f u n c t i o n s  in  p a r t i c u l a r  c a s e s  

2.1. No symmetry 
The contr ibution of each a tom is in this case a random 

variable. :For the real par t  of F 

~¢=f¢ cos (2us. re), (7) 

where s = ha* +/cb* + lc* (8) 

is the position vector in the reciprocal lattice, and 

r j  = %a  + vjb + w~c (9) 

is the position vector of the j t h  a tom within the unit  
cell of the crystal. The variable ~i is periodic with 
periods a, b, c; for definiteness it is convenient to choose 
the origin of rj  a t  the ' centre of g rav i ty '  of the cell, so 
t ha t  g 

Z Lr~ =0 .  (10) 
j = l  

The greatest numerical values of u~, v~, wj will then be of 
the order of one-half. For  large s the cosine factor in (7) 
takes on both positive and negative values as the 
direction of s changes, so tha t  the mean value x~ of ~ 
(averaged over various directions of s) is approximate ly  
zero, and its mean-square deviation from its mean value 

2 ½f~. The value of A ° is then is s t = 

N N 
2 1 2 A 2= Z a ~ = ~  Z f~ =½X, (11) 

j = l  z ~ j = l  

and the probabil i ty  tha t  the real par t  of the s tructure 
ampli tude lies between x and x + dx is 

P(x) dx = (2~r)-~ A -1 exp { - xe/2A 2} dx 

= (TrZ)-i exp { -  x2/Z} dx. (12) 

Similarly for the imaginary par t  

~h = f i  sin (2ns. rj), 

/~  = ((~]j_ y/)2)____ 1 9. 

N N 1 e 
B Z Z =½z, 

./=1 ./=1 

P(y) dy= (,Z)-½ exp{ - y2/Z}dy,, 

(13) 

where the angle brackets ( ) denote mean values over 
various directions of s. The probabi l i ty  t h a t  x will lie 

between x and x + dx, y between y and y + dy, is therefore 

P(x, y) dxdy = P(x) P(y) dxdy 
= ( ; r E ) - l e x p { - ( x 2  +y2)/E}dxdy, (14) 

in agreement with (2). 
Equat ion  (14) is, however, based on the assumptions 

tha t  
xj =L(cos (2.s .  = 0, (15) 
yj =L(s in  (2ns. r j))  = 0, (16) 

 fj, (17) a~=([x~_fjcos(2ns, rj)]2)= .1_ 2 

fl~=([yj-fisin(2ns.rj)]2)=½f~. (18) 

Equat ion  (16) is, in fact, always valid, since for every 

reflexion hkl there is another  hkl with the opposite value 
of y~, but  the others are only limiting values for large s. 
For small s the distr ibution function will have the form 

P(x, y) dxdy 
=(2rrAB)-lexp(-(x-X)2/2A2-y2/2B2}dxdy,  (19) 

where X is not  necessarily zero and A and B are not  
equal. The mean value of the intensi ty will then be 

( I )  = I I  (x2 + ye) P(x, Y) dxdy 

= (2rrA B)-I (x2 + ye) 
d - - o o  - - o o  

x exp { - - X) /2A  - y /2B } d dy 

=A2 + B2 + X 2. (20) 

2.1.1. The values of the functions averaged in 
equations (15)-(18) should be those for s a t  the discrete 
points of the reciprocal lattice, but  for large N the 
average over the discrete points will approximate  to 
averages over regions of reciprocal space. There are two 
ways of averaging of part icular  importance:  the general 
case where the average value for the general reflexions 
hkl is taken for all values of hkl giving approximate ly  
the same value of s, and the special case when the 
average value for a zone of reflexions (say h/c0) is taken 
for all values of h and/c giving approximate ly  the same 
values of s. In  the general case, with polar co-ordinates 
s, ~r, ¢ chosen with the axis parallel to r~., (15) becomes 

xj = (fj/41r) cos (2~r~ s cos ~/r) sin ~d  ~d¢  
dO dO 

__f~ sin (2urj s) (21) 
21rr~s 

This approaches zero for s large, but  fj  for s small. 
Equat ion  (17) becomes 

= (f~/4rr) eos~(2rrrjscos~)sin~)d~d¢ 
J 0  J 0  

_f~sin~(2nr~ s) 
(27rrjs) ~ 

Eli-+2 sin47rrjs 2sine(27rrjs)q 
= 2f~ 4nrjs ~ -  _], (22) 
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which approaches ½f~ for s large, but zero for s small. 
Similarly (18) becomes 

~1 ~. 1 2 s~4nr¢s 7 
f l~=~f~_ 4nr~s J' (23) 

which is ½f~ for s large, but zero for s small. In  order to 
calculate X, A, B equations (21)-(23) have to be 
summed for all values of j .  For small s they may be 
expanded in even powers of s, so that  X depends on the 
zeroth, second, fourth, ... moments of the cell about its 
centre of gravity, and A and B depend on the zeroth, 
second, ... moments of a cell with atoms of weight f~ 
about its centre of gravity. These moments involve a 
knowledge of the crystal structure, but  for 2/large they 
cannot be far from those of a cell with the same number 
of electrons distributed uniformly. With 

N 
H =  Z fi, (24) 

j = l  

mk = U -x _-I u r~d U, (25) 

where U is the volume of one unit cell, 
N 

N k =  X fjr~-- Hmk, (26) 
i = 1  

N 
~ r  ~ " "~ " (27) M ~ =  ~E j j  ¢ -~m~,  

i = 1  

the expressions for X, A, B become 
N 

X---- Z x i=-7~0  --§-N's(rrs)u + i~sN4(z r s )  a - - ' " ,  (28)  
1=1 

-- H[1-§m'2 (rrs)S+ ~2~--cma(zrs) a - . . . ] ,  (29) 
N 

A s Z ~ y  = 1 6 "  4 64 6 = ~M~(n~)  - 3 - ~ 6 ( n s )  
~ - 1  + . . . ,  (30)  

- ~ [  ~6 ~ 3-~m6(~sP ~ m ( ' s )  - 

+...], (31) 
N 

B~= Z fl~= -~Ms(~rs) 2 -{-~M~(~s)~+..., (32) 
i = 1  

- E[ ~m2(ns) 2 - ~ ~-~m~(zrs) ~ + ...], (33) 

<I} -N~o-~(NoNs ' -M2)  (Trs)S +-~(-~NoNa +-~Ns ~ ~ 
~Ma)  (Trs) 4 + .... (34) 

For large s the values of X, A 2, B ~ oscillate about the 
asymptotic value s (equations (21 )-(23)) 

XNO, (35) 
' N 2~ 1 2 A ~ E f¢[1--(2~rr¢s) -~] 

~=1 

= { Z -  M_2/Sn2s 2 (36) 
- ½Z[1-m_~/4nss2], (37) 

N " 
BS 1 ~ ~ ~] f t  = ½E. (38) 

i = 1  , 

I t  has not been found possible to obtain an asymp- 
totic value for <I>, other than E; substitution of the 
values of A 2, B ~' and X 2 in (20) gives 

< / > = Z +  Z fff~sin(2zrr~s)sin(2zrrcs) (39) 
# 

i#i" 2nr~s 2nr~s ' 
and the sum in this equation appears to have no simple 

interpretation. The main interest in these calculations 
lies in the possibility of using <I) to put  relative in- 
tensities on an absolute basis. I t  is, therefore, important  
to make some estimate of the minimum value of s for 
which <I> has practically reached its asymptotic value. 
This can be approached in two ways: from (34) and 
from (39). I f f  is an 'average '  atomic scattering factor 
and a a n '  average'  cell dimension, N o - Nf,  N 2 - ¼Nfa 9, 
M s # ~Nf2a 2, so tha t  

( I > -  N2fs{1-½(1-N-~)  Oras)2+...}. (40) 

This falls to haft value for s - 0.4a -1, so it is reasonable 
to suppose tha t  for practical purposes it reaches its 
asymptotic value for s a small multiple of this, say 2a-L 
Alternatively, the sum in (39) consists of N ( N - 1 )  
terms of random sign and average magnitude less than 
[fm_l(2ns)-l] 2, so tha t  

<I>~Z+O{~/[N(N-1)J[fm, l (2Ws)- i]  2} (41) 
=211+ 0{(4as)-~}], (42) 

where 0 { } means 'o f  the order of magnitude of'.  The 
smallest deviation from E worth considering is probably 
of the order of 10 %, which means tha t  s should be 
greater than a -1, an estimate of the same order of 
magnitude as tha t  obtained from (34). In using the 
mean value of I to put  intensities on an absolute basis, 
therefore, the region of averaging should not include 
reflexions tha t  have not at least one index of 2 or 
greater. In  view of the approximate nature of the 
estimates involved, some care in using this criterion is 
necessary when the axes are of very different lengths. 

2.1.2. In the special case of a zone of intensities (18) 
becomes, with the axis of polar co-ordinates s, ~r per- 
pendicular to r~ and the zone axis, 

x . _  f_L ~2, 
~ - 2 . 3 0  c o s ( 2 . ~ ; s s i n ~ ) d ?  

=fJo(2nr;s), (43) 
where J0 is the Bessel function of order zero and r~- is " 
the projection of r~ on the plane perpendicular to the 
zone axis. Like (21), this approaches zero for s large, f~ 
for s small. Equations (17) and (18) become 

o~j 
t 2 t -½f2[1 + Jo(4n%~)- 2Jo(sTrr~s)], (44) 

and fl~= 2 1 2 ' <,b.> = ~fj [1 - J0(4~%~)], (45) 
approaching ½f~ for s large, zero for s small. Power 
series expansions for small s give 

x~ = A l l  - (~)~r? + 1 ( . ~ ) % , _ , . . ] ,  (46) 
X =  N o - ~2(7rs) 2 + ~N4(ns)4-. . . ,  (47) 

- H[1 - ms(Trs) 2 + ¼m4(gs) 4 -  . . . ] ,  (48) 
2 2 : 1 t4 1 6 t6 - ~(TrS) r~ ...], (49) at =f~[  , ~(~s)% + 

AS= : ½M,(ns)4-½m6(,s) 6 + .... (50) 
- z [  ½m,(.8)' - ~ 6 ( . ~ )  6 + ...], (51) 

s s f l j=f~[  2(.s)2r? - 2 ( . ~ ) % , + . . . ] ,  (52) 
B 2 = 2M~(Trs) ~ -  2Ma(ns) a +. . . ,  (53) 

-- E[ 2Me(Trs) 2 + 277"~4(7r8) 4-{-.. .], (54) 

<I>= Ng- 2(NoN~- M~) (.~)'-+~(NoN,+ 2N~ 
--  3 M 4 )  (zrs)4-- . . . ,  (55)  
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where the N's, M's and m's are polar moments of 
inertia about the zone axis. For s large, X, A 9", B ~ 
oscillate about the values X = 0, Bg= ½Z, and 

= ½ z - l M l ( r r s ) - I  +... (56) A 2 

- ½Z[1 - m_l(2~s) -1 +. . . ] .  (57) 

The asymptotic value of (I~ is again Z. An estimate of 
the minimum value of s for which it is safe to assume 
that  (I~ has this value, by the same methods as in 
§ 2.1.1, gives the same result, s > 2a -1. 

2.2. Centre of symmetry 
The atoms are in pairs related by a centre of sym- 

metry, so that  
~j = 2fj cos (27rs. rj), (58) 

y~--0, (59) 
and for large s 

x~=(~j>=O, yj--O, (60) 
½N 

X =  E x =0, (61) 
i=1  
½N ½N 

2 E A~= Z a~=2 Z f~= , (62) 
j = l  j--1 

P(x)dx=(2~r)-i A exp{-xe/2A~}, 
= (27rZ)-~ exp { -  x~/2Z} dx, (63) 

P(y) gy = 8(y, O) gy, (64) 

where 3(y, 0) is the delta function (3(y, 0) = 0, y ¢ 0, 

f_:$(y,O)dy--=l). Equation (63)expresses Hughes's 

empirical result. 

2"3. Centring 
A centred crystal can always be referred to a primitive 

lattice, and ff this is done the preceding discussion 
applies ~¢ithout change. If, however, the centred lattice 
is retained, many reflexions have intensities identically 
zero, and the average value of the non-zero intensities 
is increased, s6 that  the average of all intensities, zero 
and non-zero, remains at Z. The distribution function 
can be written formally 

P(I)=(k-1)k-~3(I ,O)+(k~Z)-~exp{-I /kZ},  (65) 

where k is 4 for a face-centred crystal and 2 for an end- 
or body-centred crystal. If  the crystal is centrosym- 
metric as well as centred, 

P(x) = ( k -  1) k -~ 3(x, O) ÷ (2nkaz)-~exp{-x~/2kZ~. (66) 

2.4. Other symmetry elements 
Other symmetry elements do not affect enough in- 

tensities to change the distribution function for the hkl 
intensities, but may effect zones. For example, the hOl 
zone for crystals with a diad axis behaves as if centro- 
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symmetric, crystals with a glide plane have a zone that  
behaves as if centred, and crystals with a screw axis 
have a line of intensities that  behave as ff centred. 

A word of warning is perhaps desirable. The whole 
analysis rests on there being a sufficient number of atoms 
'randomly'  distributed. When this condition is not ful- 
filled, for example when the structure is dominated by 
a heavy atom, or when there is a superstructure or other 
pseudosymmetry in atomic arrangement, the intensity- 
distribution function is abnormal. I t  is likely that  in- 
dividual treatment of such cases would yield useful 
results, but it does not seem worth while at the present 
stage to attempt a general treatment. 

3. P o s s i b l e  d e t e c t i o n  o f  c e n t r e s  of symmetry 

The preceding discussion may perhaps put the ( / )  
method of determining absoIute from relative intensities 
on a firmer basis. I t  opens up, however, the possibility 
of a purely X-ray determination of the presence or 
absence of a centre of symmetry, since the distribution 
function takes different forms in these cases. The best 
practical approach would probably be through a com- 
parison of ( I F l ~  and ( I ) ;  for non-centrosymmetric 
crystals 

/ /  
= ½(TrZ)~, (67) 

and for centrosymmetric crystals 

/o o (1F exp{-I/2Z)dI 

= (2Z/Tr)~. (68) 

Thus p-<] (69) 
in non-centrosymmetric crystals, a n d  

p = 2/7r - 0.637 (70) 

in centrosymmetric crystals. The difference between the 
ratios 0.785 and 0"637 is not great, but may suffice with 
accurate intensity measurements. (The measurements 
need not be put on an absolute scale in making this com- 
parison. For centred crystals the ratios are divided by 
k.) There is a larger percentage difference between 
the two values of (I2>, but experimental errors are 
multiplied and there may be no real advantage. 
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